
Acquiring Evolving
Technologies:
Web Services Standards

Harry L. Levinson
Liam O’Brien

February 2006

Acquisition Support Program

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2006-TN-001

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Acknowledgements ... iii

Abstract..v

1 Introduction..1
1.1 Making Decisions..1

1.1.1 The Challenge of Using COTS Components2
1.1.2 Technology Readiness Assessments ...2

1.2 The Challenge of Assessing Evolving Technology3

2 The Challenge of Assessing Web Services Standards5
2.1 Language Translation Services Project ..5
2.2 Quality Attributes...6
2.3 Web Services Standards ..7

3 Assessing the Appropriateness of Web Services Standards....................9
3.1 Assessing Appropriateness ..9
3.2 Selecting Relationships to Assess ..10
3.3 Developing an Assessment Tool...10
3.4 Selecting a Rating Criteria .. 11
3.5 Assessment Example ...12

4 Conclusion ...14

Appendix A Appropriateness Assessment Results....................................15

References...55

CMU/SEI-2006-TN-001 i

ii CMU/SEI-2006-TN-001

Acknowledgements

The authors would like to thank Paulo Merson, Mary Ann Lapham, John Foreman, Ted Marz,
Bud Hammons, and Michael Bandor of the Carnegie Mellon® Software Engineering Institute
(SEI) for their technical reviews. Their thoughtful comments greatly improved the quality of
this report. The authors wish to thank Bob Ferguson and Linda Levine for sharing their
knowledge and expertise. Thanks also to Susan Kushner for her excellent editorial support.

® Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon
 University.

CMU/SEI-2006-TN-001 iii

iv CMU/SEI-2006-TN-001

Abstract

Software development projects rarely are started or proceed without risks involving the
technologies used. Typically, many facets of a project such as system functionality and tool
support depend on the availability of a specific technology. This dependency poses risks: the
required technology can disappear within the project’s life cycle or a promised technology
may not be available when it’s required.

A popular software technology today, Web services standards, is a widely supported approach
to implementing a service-oriented architecture. Because Web services standards promise
system interoperability and flexibility to large projects, commercial and government
organizations are including it as the cornerstone of future computer-based systems. In fact,
many systems currently being architected and designed assume the availability of products
built upon a stable and effective set of Web services standards. This assumption presents
project stakeholders with a large technology availability risk.

This technical note discusses some of the challenges of using Web services standards and
presents the results generated by an assessment tool used to track the appropriateness of using
this technology. The appendix includes an example built using the authors’ opinions about
the current level of appropriateness of using Web services standards in a typical, large
software-intensive project.

CMU/SEI-2006-TN-001 v

vi CMU/SEI-2006-TN-001

1 Introduction

“All our lauded technological progress—our very civilization—is like the
axe in the hand of the pathological criminal.”

—Attributed to Albert Einstein

Addressing and managing evolving technology in software development is a challenge and
can even seem to be an impossible job when nothing stays the same over time. In this report,
the evolution of technology is viewed from two perspectives. First, software projects change
over time due to modified requirements, fluctuating constraints, and altered designs due to
implementation decisions. Second, technology selected for the project will change, usually
for reasons beyond the control of the project. For these reasons, software architects,
engineers, and project managers struggle with the need to use an evolving technology while
trying to deliver a project on schedule and within budget.

An assessment tool can be used to better understand the implications of using an evolving
technology within the bounds of a project that is itself likely to change. This report presents
the results generated by an assessment tool the authors created for tracking certain aspects of
an evolving technology, Web services standards.

1.1 Making Decisions
Each of us needs to make decisions when confronted with choices. For instance, deciding
how to get from point A to point B could be daunting if one were to consider all of the
available modes of transportation. Your long list of options could include the automobile,
bus, airplane, train, bicycle, walking, and any combination thereof. In addition, the decision
requires wrestling with conflicting factors such as how fast do I need to get to point B, how
much will it cost, what is my desired level of comfort, does my choice impact the
environment, are there benefits to personal health, is the mode of transportation enjoyable
and convenient, just to name a few.

The decision-making process has been investigated from many different angles. This is
evident in the number of textbooks that discuss decision-making. In the acquisition of
software products today, tools, methods, and even regulations exist in an attempt to improve
the overall quality of software-intensive systems by addressing various areas in the
management of new technology. Deciding when it is beneficial to use new software
technology is a common issue throughout the software development and acquisition
communities. The following sections discuss why it is important to have processes and tools
in place to help manage information used to make technology decisions.

CMU/SEI-2006-TN-001 1

1.1.1 The Challenge of Using COTS Components

The use of commercial off-the-shelf (COTS) software components is prevalent throughout
software development organizations today. In theory, the reason for selecting a COTS
software component is to use a proven solution, thus reducing the overall schedule and effort
for a project, while improving quality. In practice, this is often a difficult goal to achieve. As
discussed in this report, selecting a COTS component is only the first step in the life cycle of
both the project and the technology. Many methods and approaches are available to help
projects evaluate and select components that will likely integrate successfully into the desired
project [SEI 05, Section “Procuring Interoperable Components”]. Many of these methods
and approaches also discuss that the selection criteria for COTS components should go
beyond cost considerations. For example, evaluating products based on system attributes
such as performance, security, reliability and maintainability improves the chances for a
successful project.

In addition to these selection issues, dealing with evolving technology presents an additional
challenge:

Building solutions based on incorporating pre-existing components is
different from typical custom development in that the components are not
designed to meet a project-defined specification. COTS components are built
to satisfy the needs of a market segment. Therefore, an understanding of the
components’ functionality and how it is likely to change over time must be
used to modify the requirements and end-user business processes as
appropriate, and to drive the resulting architecture [Albert 02].

This quote points out one of the many challenges facing practitioners. Many approaches
stress that monitoring the appropriateness of the selected COTS component throughout a
product’s life cycle is necessary. Thus, the need for a tool to help monitor evolving
technology is evident.

1.1.2 Technology Readiness Assessments

Current Department of Defense (DoD) acquisition directives and instructions require that
Technology Readiness Assessments (TRAs) be conducted several times during the life cycle
of a product acquisition [DoD 03a, DoD 03b]. A TRA examines program concepts,
technology requirements, and demonstrated technology capabilities in order to determine
technological maturity. Maturity is described through a “recommended technology readiness
level (TRL) (or some equivalent assessment) for each critical technology.”

The use of TRLs enables consistent, uniform, [sic] discussions of technical
maturity across different types of technologies. Decision authorities will
consider the recommended TRLs (or some equivalent assessment
methodology, e.g., Willoughby templates) when assessing program risk.
TRLs are a measure of technical maturity. They do not discuss the

2 CMU/SEI-2006-TN-001

probability of occurrence (i.e., the likelihood of attaining required maturity)
or the impact of not achieving technology maturity [DAU 04, Section
10.5.2].

The DoD’s Technology Readiness Assessment (TRA) Deskbook describes in detail how to
identify the critical technology for a project and evaluate the TRL for that technology [DoD
05]. By design, TRLs assign a single value to make it easier to select a single technology
from competing technologies by creating a single common denominator. Usually when
selecting a software technology, a difficult and sometimes frustrating task is managing the
various competing attributes of the whole decision. Smith discusses several “orthogonally
related” attributes that should be considered when making a decision to utilize a software
technology [Smith 04]. These consist of the following four attributes:

1. Requirements: How well the functional and non-functional requirements can be
allocated to a solution

2. Environmental Fidelity: How closely the selected technology has been operated in the
solution’s environment

3. Technology Criticality: How dependent the solution is on the selected technology

4. Product Aging: The lifespan of the technology related to the lifespan of the solution and
also the maturity of the technology in the marketplace

This report discusses how using a subset of these attributes helps facilitate the decision-
making process.

1.2 The Challenge of Assessing Evolving Technology
These examples of software reuse and TRA processes show how important it is to gather
information about a technology and then reason and even experiment to determine its
appropriateness for use. In addition, these processes require that information be gathered
several times during the life cycle of a product to reevaluate the technology’s
appropriateness. Even for complex technology, understanding the functional features is fairly
straightforward. However, to make effective choices, decision makers usually need a way to
make the unique characteristics of the technology more understandable. Using a tool to
summarize and track these unique characteristics is one way to make this information more
understandable and usable when assessing new technologies. These tools are usually built
using text documents, spreadsheets, or databases to make the information available and
understandable to the decision-makers.

In Section 2, we will explore some of the decisions that need to be made in large software
projects using Web services standards. Section 3 describes the assessment tool used to
generate the results presented in the appendix of this report. This tool was designed to track
the appropriateness of Web services standards in the areas of requirements and maturity for
use in large software systems. The results contained in the appendix are intended to be a
starting point for project managers and software architects to help them make difficult

CMU/SEI-2006-TN-001 3

project-level architectural design decisions early in a project. Note, however, that they reflect
a snapshot of an evolving technology as of November 2005. In an attempt to satisfy
stakeholders’ changing needs and expectations, assessment tools should be modified and
updated frequently to meet the evolving needs of the project and the current state of the
technology.

4 CMU/SEI-2006-TN-001

2 The Challenge of Assessing Web Services Standards

To assess the appropriateness of a technology for use within a project requires an
understanding of the project’s goals and how the selected technology will evolve. This
section provides some insights into the challenge of assessing technology in general and Web
services standards in particular. In order to better reason about the appropriateness of using
Web services standards on a large project and to better relate the methods presented in this
technical note to a real-world situation, we first introduce a notional project. We then look at
quality attributes, which is one of the many software architectural concepts critical for
creating successful products. Last, we discuss how Web services standards are created and
evolve.

2.1 Language Translation Services Project
The notional project, Language Translation Services (LTS), is a commercial software system
envisioned to provide thousands of services worldwide, with thousands of users who have
different levels of system needs. Users of this system want to translate one or more words
between languages. Each service in the system is designed to accept from 1 to 1000 words in
one language and to return a message that contains words translated into another language.
To encourage worldwide development and use, each service is limited to a single originating
language and a single target language. The data communication network is sufficient to
enable the required communications, but because of the distance messages travel and high
network traffic, response time can be slow. Because of the need to interoperate with other
systems and to encourage software reuse, the stakeholders have decided to use Web services
standards as a key design principle.

For example, the following scenario can be used to reason about a few of the decisions that
need to be made for LTS.

The first part of a translation transaction requires a transfer of 1000 English
words from an LTS application to an LTS service in less than 5 seconds with
a .0001% or less likelihood of unauthorized viewing of the data within 50
years.

To help a system designer make tradeoff decisions, determining answers to the following
questions from an architectural and implementation perspective represents large steps toward
formulating a system design:

• How can performance between an LTS application and service across the worldwide
network be predicted and monitored?

CMU/SEI-2006-TN-001 5

• How can the information be encrypted so that both the LTS application and service can
decode it?

• What does the LTS application need to do to guarantee that the exact same information
arrives at desired LTS service?

• Can an LTS service trust that the received message is actually from an authorized LTS
application?

Before we can create an assessment tool, we need to better understand the quality attributes
of a system such as LTS. Also, it would be useful to understand the mechanisms of Web
services standards development. The following sections discuss quality attributes and Web
services standards development and how they relate to the LTS example.

2.2 Quality Attributes
Software architecture is an important phase of the software development life cycle. There are
many processes and technical concepts that are employed to create and document a software
architecture. One architectural concept called quality attributes is used in this report to help
with our assessment activity. In the software architecture field, quality attributes are
sometimes referred to as “non-functional requirements” or the “-ilities.”

For example, we can extract some quality attributes that are relevant to this system from what
we know about the notional LTS project:

• Reliability: the ability to make sure the message actually gets to the correct system

• Performance: the requirement to move 1000 bytes of data in less than 5 seconds

• Security: make it highly unlikely that an unauthorized entity can gain access to the data.

Why is it important to consider a system’s quality attributes? Early decisions in the
architectural process have an impact on the subsequent quality attributes of the system. As
pointed out in Software Architecture in Practice, defining quality attributes is a crucial
activity:

1. Architecture is critical to the realization of many qualities of interest in a system, and
these qualities should be designed in and can be evaluated at the architectural level.

2. Architecture, by itself, is unable to achieve qualities. It provides the foundation for
achieving quality, but this foundation will be to no avail if attention is not paid to the
details [Bass 03, p. 72].

Another characteristic of quality attributes is that they normally compete within a system for
dominance. Increasing the prominence of one quality attribute usually decreases the
prominence of one or more other quality attributes. These tradeoffs, inherent in every design,
are decisions that an architect should share with all stakeholders throughout the life cycle of
the project.

6 CMU/SEI-2006-TN-001

Although there are many factors to a project’s success, understanding the desired system
quality attributes is one of the key influences. In the beginning of the software life cycle,
architecture is usually considered at a high level of abstraction, but as Bass and colleagues
point out, high-level decisions need to be backed up by detailed work [Bass 03]. Focusing on
quality attributes helps the stakeholders become more aware of the ways in which tradeoffs
affect how the overall system works.

2.3 Web Services Standards
Web services technology is being used industry-wide to implement interoperable service-
oriented architectures (SOAs). This technology comprises a set of evolving standards that
tries to address many of the goals and challenges of the overall SOA approach. Some
organizations that want to lower the cost of development and maintenance for software
systems, while at the same time becoming more flexible in terms of capabilities, consider
Web services standards as a possible solution. A big reason that SOAs are storming the
software solution space is their key quality attributes such as interoperability, extensibility,
and modifiability [O’Brien 05].

When trying to predict the future state of Web services standards, it helps to understand the
current process of defining and implementing them for use in solutions. While this process
can be fragile, clumsy, and frustrating, it is the method used worldwide to develop an SOA
that interoperates across multiple private and commercial implementations.

A key goal of Web services standards is to support interoperable machine-to-machine
interaction over a network. This is accomplished today by using Extensible Markup
Language (XML)-based messaging such as Web Services Description Language (WSDL),
the Simple Object Access Protocol (SOAP), and the Universal Description, Discovery, and
Integration (UDDI). These, as well as additional standards, are managed by a consortium of
industry members. The process for developing standards is open and evolutionary and as a
result, the creation of new standards and subsequent revisions is unpredictable in both content
and timing.

Many organizations are working to establish open standards, but there are three that are key
to the evolution of Web services standards. Each of these three organizations encourages
individual and organizational membership and support from both the commercial and
academic communities. Members meet frequently to evolve standards through defined
processes for creation of drafts, public review, and approval of final standards.

One of the key organizations that develops Web standards is the World Wide Web
Consortium (W3C1) founded by Tim Berners-Lee, the inventor of the World Wide Web.
Starting with the Hypertext Transfer Protocol (HTTP) and working its way up to XML,
SOAP, and other standards, this organization is made up of many committees whose goals are

1 For more information about W3C, visit http://www.w3.org.

CMU/SEI-2006-TN-001 7

to create and maintain Web standards that the W3C calls “recommendations.” Another
group, the Organization for the Advancement of Structured Information Standards (OASIS2),
is dedicated to creating the infrastructure and implementation of Web services standards. The
other organization called the Web Services Interoperability Organization (WS-I3) delivers
practical guidance, best practices, and resources for developing interoperable Web services
solutions. All three of these organizations rely on the international software engineering
community including commercial companies, universities, and individuals to commit the
knowledge and finances that allow them to operate.

At the time of this writing, Web services standards have a significant number of prominent
proponents including Microsoft, IBM, Oracle, and BEA, in addition to the open source
community that demonstrates its support through many initiatives, such as an Apache
Software Foundation Web services project called Axis.4 In addition, many smaller
companies, Sonic, Actional, and Systinet to name a few, have built their business plans by
relying on Web services standards. There are hundreds of other companies large and small
that create software components built on interoperable standards and recommendations.
Many of these companies develop products that enable applications to be built by integrating
components built on Web services standards at the application level. The goal of using Web
services standards is to build a system by installing products released by different companies
and to allow the individual components to work together seamlessly.

The amount of activity in the Web services standards arena and wide industry support lead
one to believe that this technology will be significant to the software development industry
for many years. One of the current problems is that the implementation of Web services
standards is slow and, at times, marked by fits and starts, causing many adoption headaches.
Understanding the capabilities of each standard and tracking their evolution is an activity that
project stakeholders need to do effectively during the life cycle of a project. The next section
describes a tool we created that helps organize and present information by relating the quality
attributes of a system with many of the more popular Web services standards.

2 For more information about OASIS, visit http://www.oasis-open.org.
3 For more information about WS-I, visit http://www.ws-i.org.
4 For more information about the Axis project, visit http://ws.apache.org/axis.

8 CMU/SEI-2006-TN-001

3 Assessing the Appropriateness of Web Services

Standards

As discussed previously, it is important to make decisions about the appropriateness of a
technology based on the quality attributes of the system. In the notional LTS project, the
applications and services are based on Web services standards, thus creating a potential
technology risk to the project. This risk is present due to evolution in the project’s
implementation and changes in Web services standards. The following sections describe the
outcome of the evaluation of this risk by showing how we assessed the appropriateness of
Web services standards with regard to impact and maturity of the Web services technologies
in a typical application.

3.1 Assessing Appropriateness
Below are a few situations that might be relevant to a solution using Web services standards,
such as the LTS project. Remember that these can occur throughout the product life cycle in
different phases and at unpredictable times.

• Changing expectations overlap with changing Web services standards.

- Example: Bandwidth increases in the underlying network lead users to expect
improved performance from the system, but at the same time, standards have increased
the number of bytes needed to send the same information.

• A design decision to use a specific standard affects one or more quality attributes.

- Example: The application used a specific standard to transfer messages reliably
between two points. The standard is changed to include an extra set of messages to
guarantee accuracy, thus affecting overall performance.

• A specific standard changes for reasons beyond the project’s scope, yet it affects system
functionality.

- Example: A compression standard was added to allow for efficient transmission over
millions of miles for space exploration. This may have a positive or negative effect on
projects that are deployed on earth.

In addition to assessing and tracking the appropriateness by using functional requirements or
environmental constraints, evaluating each standard against a selected group of quality
attributes and tracking the results will help us make appropriateness decisions throughout the
LTS life cycle. For the LTS project, we assessed and tracked two dimensions of
appropriateness of Web services standards: the impact they have on the system quality
attributes and the maturity of the standards as related to the system quality attributes.

CMU/SEI-2006-TN-001 9

3.2 Selecting Relationships to Assess
The focus of the report by O’Brien and colleagues is to indicate the impact that an SOA
approach has on a group of quality attributes of an application [O’Brien 05]. An application
using Web services standards usually consists of a combination of individual standards, but
the use of each standard has the potential to impact each quality attribute of an application or
service in different ways. By understanding how each standard affects the quality attributes
of the system, the architects, engineers, and project managers can make better assessments
about how to use software based on the Web services standards. Another dimension of this
assessment is the maturity of a technology. As discussed earlier, the process to create and
evolve each Web services standard is volatile and currently many of the standards are
changing.

However, over time the impact and maturity dimensions will change. This occurs because
the Web services standards, the project requirements, the architecture, and the
implementation evolve. As each standard evolves, changes will be made that may affect the
impact that it has on each of the quality attributes. For example, a security standard that
originally seemed to have no impact on system modifiability could be changed to restrict
future architectural changes. Or the lack of features within a standard can make maintaining
systems that rely on it more difficult.

When looking at a standard’s maturity, it may seem obvious that the maturity increases as
time goes on or that monitoring the maturity of the standard may seem unnecessary after it
has been thought to reach a mature state. In reality, both of these assumptions are incorrect.
A poorly conceived standard implemented in many products may have more and more
features added to it, causing it to become unstable. Additionally, as the Web services
standards improve overall, user expectations increase, thus requiring expanded support to
specific standards.

3.3 Developing an Assessment Tool
The impact a Web services standard has on a quality attribute and the maturity of a standard
are significant contributors to the project’s risk and subsequent mitigation strategies. While
there are other factors to consider such as the availability and quality of Web services, COTS
products, and the training and skill level of available staff, we have selected impact and
maturity relationships to track as input to help architects, engineers, and project managers
make appropriateness assessments. As pointed out in this technical note, there are many
reasons for the assessments to be conducted multiple times during a product’s life cycle.

The proposed assessment tool is not complicated, although the number of standards and
quality attributes to track is large. For each standard, 13 different quality attributes are
evaluated in two different ways. First, the impact that the standard has in relation to each one
of these quality attributes is rated. The second relationship is an evaluation of maturity, or

10 CMU/SEI-2006-TN-001

the likelihood that the standard will change in relation to the specific attribute. This
determination can be made in various ways ranging from analytical to empirical.

We started to track these relationships in a spreadsheet. Making the results understandable
and meaningful became difficult as the number of Web services standards increased. The
spreadsheet was organized into six pages, with the standards grouped according to their main
function. The spreadsheet format was effective, but it was hard to keep track of why each
value was selected. We decided to expand the tool into a database containing six different
tables. In this way, the information could be grouped and presented in various reports
allowing the data to be visualized and analyzed differently.

Between August and November 2005, we evaluated Web services standards at a high level
and entered information into the database assessment tool. The results are contained in the
appendix of this report. There are several notes of caution to users of these results.

• The presented results were prepared to test the usefulness and validity of the assessment
process and the tool.

• The assessment value selected for each cell was determined by our studying the
associated Web services standard and making a “best guess” as to its impact and maturity.

• Additionally, the results include only our opinions as of November 2005; further analysis
and validation through experimentation would be required to develop more accurate
assessment.

3.4 Selecting a Rating Criteria
Since the intent of this exercise was to evaluate the tool, a simple three-level rating scale was
selected. For the impact dimension the three levels are defined as follows:

Positive The standard tends to support the quality attribute.

Minimal The standard has little or no affect on the quality attribute.

Negative The standard tends to degrade the quality attribute.

For example, a standard that implements security related features would be assessed as
“positive” in relation to the security quality attribute.

The values of “Mature,” “Adolescent,” and “Immature” were selected to more closely relate
to the maturity dimension. In addition, since the results were being viewed in a table, using
different values allows the reader to more clearly determine which dimension an individual
cell represents.

CMU/SEI-2006-TN-001 11

Mature The standard is widely used and is not expected to change as related to the quality
attribute.

Adolescent The standard is in low use or may change as related to the quality attribute.

Immature The standard is not in significant use or is likely to change as related to the quality
attribute.

Keep in mind that a standard may be maturing in relation to certain quality attributes but
because significant change is expected to happen it may be less mature in other quality
attribute areas.

As a summary for each standard, we calculated an overall impact and maturity rating based
on the results for all of the quality attributes. For each rating, we assigned a numeric value.
The average of these values, which falls between -1 and 1, is shown at the bottom of each
column. A negative average indicates an overall negative impact or low maturity; an average
above zero indicates a positive impact or more mature overall assessment. Because this
scale is very coarse and the relationships between the dimension and quality attribute are
complex, this overall rating should be used only as a rough indication of overall impact or
maturity.

3.5 Assessment Example
The example below displays ratings for one of the 13 quality attributes, Security, for the Web
services standard, Security Assertion Markup Language (SAML), assessed in terms of impact
and maturity in relation to our notional LTS project. This particular standard is maintained by
an OASIS committee. Since this standard is directly related to the security quality attribute,
the impact value we assigned is “Positive.” The development of Version 1.0 of this standard
began in 2001 and was adopted in November 2002. However, after three years of wide
adoption, OASIS and others are actively working on Version 2.0 of this standard. For this
reason, we assigned a maturity rating of “Adolescent.”

Impact Maturity
Security Positive

Standardize passing of security information
Adolescent
Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

For each quality attribute, we applied similar reasoning to assign one of the three ratings for
the impact and maturity assessments. As shown in the appendix, after rating all of the
relationships for this standard, an overall rating of 0.46 was calculated for impact and 0.00
for maturity. Since the overall impact rating is a positive number, it indicates that SAML has
a positive impact to the overall capabilities of LTS. Because there was recent release of
SAML, each maturity relationship was rated at “Adolescent” (sometimes for different
reasons) to achieve the overall rating of 0.00. This value indicates that the LTS stakeholders

12 CMU/SEI-2006-TN-001

should monitor the project’s security design decisions along with the new SAML changes as
the new release becomes part of the LTS project.

The appendix contains example results for 38 Web services standards, assessed for impact
and maturity, based on 13 quality attributes.

CMU/SEI-2006-TN-001 13

4 Conclusion

This technical note demonstrates one way of systematically assessing the appropriateness of
using a popular but evolving technology, Web services standards. By focusing on the
project’s quality attributes, another dimension to technology assessments can be added to
help software architects, engineers, and project managers make complex decisions. We chose
the popular Web services standards technology as an example in the hope that the results of
our examination will be useful to active projects.

Use this assessment tool and the associated process as a beginning and tailor it to meet the
needs of applications and services that use Web services standards. The goal is to make
informed decisions and track those decisions on a regular basis. Remember the ‘axe’
mentioned by Einstein; technology assumptions change frequently so the decisions based on
these assumptions need to be reviewed regularly.

14 CMU/SEI-2006-TN-001

Appendix A Appropriateness Assessment Results

The information presented in this appendix was prepared by the authors in November 2005
and is presented as a baseline analysis of Web services standards. The reference project was a
typical project using Web services standards such as the LTS project described in the report.
The modification and expansion of the appropriateness assessment results presented in this
appendix is required for effective use in your project. The assessment tool you use should be
tailored to the specific needs of a project by

• selecting which quality attributes to track based on your project’s requirements

• selecting which standards are tracked to meet project requirements

• tracking selected commercial Web services products to determine the appropriateness of
the solution

One last caution is that this technical note does not address how you should make decisions
such as gathering the information for each comparison or how to make system level decisions
based on this tool. There are many ways to do this, ranging from plain old guessing, informal
opinion gathering and synthesis, or a more structured approach like Wideband Delphi. The
method you choose will vary, depending on your project’s needs.

How to Read the Results
The results are presented alphabetically according to the standard’s name. At the top of each
page a line of text indicates the managing organization and the version and date of the
standard’s documentation that was used for the analysis. Each page contains two data
columns. The first column represents the impact that the standard has relative to each
individual quality attribute. A simple three-level scale was selected to indicate a positive,
minimal, or negative impact in this relationship.

Positive The standard tends to support the quality attribute.

Minimal The standard has little or no affect on the quality attribute.

Negative The standard tends to degrade the quality attribute.

The second column represents the maturity of the standard in relation to each quality
attribute.

CMU/SEI-2006-TN-001 15

Mature The standard is widely used and is not expected to change as related to the quality
attribute.

Adolescent The standard is in low use or may change as related to the quality attribute.

Immature The standard is not in significant use or is likely to change as related to the quality
attribute.

Each page in this appendix contains the assessment results for a single standard with regard
to impact and maturity as they relate to each of the 13 quality attributes. Below each rating is
a brief comment that indicates the reason for the rating.

To get an idea of the overall impact or maturity for each standard, a number between -1 and 1
is shown at the bottom of each column. For each individual result we assigned a numeric
value of 1, 0, or -1 and then averaged these values for the whole column. For the impact
column, the average is a rough indication of how the standard may negatively or positively
impact the system. For the maturity column, the average is a rough indication of how mature
the standard is in relation to the system’s quality attributes. Remember that the results
presented here were not derived from detailed analysis or an actual project’s architecture.

16 CMU/SEI-2006-TN-001

WS Standard: Asynchronous Service Access Protocol (ASAP)
Organization: OASIS, Ver: v1.0 5/05

Impact Maturity

Adaptability Positive Adolescent
More flexibility in integrating services
and processes

Although new, probably won't change much
for this QA

Auditability Negative Immature
Difficult to audit asynchronous services Anticipate change for this QA

Availability Minimal Adolescent
Not key QA Although new, probably won't change much

for this QA

Extensibility Positive Adolescent
Allows for integration of processes Although new, probably won't change much

for this QA

Interoperability Positive Immature
Allows for better interoperability with
longer running services

Anticipate change for this QA

Modifiability Minimal Adolescent
Not key QA Although new, probably won't change much

for this QA

Operability and
Deployability

Minimal Adolescent

Allows for asynchronous service to be
integrated

Although new, probably won't change much
for this QA

Performance Negative Immature
Asynchronous services can negatively
affect performance

Anticipate change for this QA

Reliability Minimal Adolescent
Does not affect the reliability of the
service

Although new, probably won't change much
for this QA

Scalability Negative Immature
Asynchronous service is hard to predict
as system grows

Anticipate change for this QA

Security Minimal Adolescent
Not key QA Although new, probably won't change much

for this QA

Testability Negative Immature
Difficulty in testing asynchronous
services

Anticipate change for this QA

Usability Minimal Immature
Allows for monitors and controls that
may provide better interactions with
users

Anticipate change for this QA

Impact Average: -0.08 Maturity Average: -0.46

CMU/SEI-2006-TN-001 17

WS Standard: Security Assertion Markup Language (SAML)
Organization: OASIS, Ver: v2.0 3/05

Impact Maturity

Adaptability Positive Adolescent
Not bound to specific transportation or
communication protocols

Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

Auditability Minimal Adolescent
Not key QA Although not key QA, may change over time

Availability Minimal Adolescent
Not key QA Although not key QA, may change over time

Extensibility Positive Adolescent
Allows for additional fields within
messages

Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

Interoperability Positive Adolescent
Standardizes passing of security
information

Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

Modifiability Positive Adolescent
Underlying system can change without
need for changing security

Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

Operability and
Deployability

Minimal Adolescent

Not key QA Although not key QA, may change over time

Performance Negative Adolescent
More messages and information need to
be passed

Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

Reliability Minimal Adolescent
Not key QA Although not key QA, may change over time

Scalability Positive Adolescent
Can handle increased usage Ver. 1.0 is mature but ver. 2.0 released

recently (2005)

Security Positive Adolescent
Standardize passing of security
information

Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

Testability Minimal Adolescent
Not key QA Although not key QA, may change over time

Usability Positive Adolescent
Supports authentication and
authorization

Ver. 1.0 is mature but ver. 2.0 released
recently (2005)

Impact Average: 0.46 Maturity Average: 0.00

18 CMU/SEI-2006-TN-001

WS Standard: Service Provisioning Markup Language (SPML)
Organization: OASIS, Ver: v2.0cd 9/05

Impact Maturity

Adaptability Minimal Immature
Not key QA 2nd version of SPML just released

Auditability Negative Immature
More items will need auditing 2nd version of SPML just released

Availability Minimal Adolescent
Not key QA Although released recently, unlikely to

change relative to this QA

Extensibility Positive Immature
Can handle multiple types of resources 2nd version of SPML just released

Interoperability Positive Immature
Provides a standard for handling
provisioning across systems

2nd version of SPML just released

Modifiability Minimal Adolescent
Not key QA Although released recently, unlikely to

change relative to this QA

Operability and
Deployability

Positive Adolescent

Provides standards for users and
system access entitlements which can
be automated

Although released recently, unlikely to
change relative to this QA

Performance Negative Immature
More messages to interpret 2nd version of SPML just released

Reliability Minimal Adolescent
Not key QA Although released recently, unlikely to

change relative to this QA

Scalability Positive Immature
Allows for extending the number of
users or systems that need access
entitlements

2nd version of SPML just released

Security Positive Immature
Provides standards for handling user
and system access entitlements

2nd version of SPML just released

Testability Negative Immature
Difficult in testing the different resource
handling scenarios

2nd version of SPML just released

Usability Minimal Adolescent
Not key QA Although released recently, unlikely to

change relative to this QA

Impact Average: 0.15 Maturity Average: -0.62

CMU/SEI-2006-TN-001 19

WS Standard: Simple Object Access Protocol (SOAP)
Organization: W3C, Ver: v1.2d 6/03

Impact Maturity

Adaptability Positive Adolescent
Fields can be changed. Passes through
firewalls

Anticipate growth related to this QA

Auditability Minimal Mature
Not key QA Many products designed using SOAP

Availability Minimal Mature
Not key QA Many products designed using SOAP

Extensibility Positive Adolescent
Easily add fields and formatting Anticipate growth related to this QA

Interoperability Positive Mature
Designed for Interoperability Many products designed using SOAP

Modifiability Minimal Mature
Not key QA Many products designed using SOAP

Operability and
Deployability

Minimal Mature

Not key QA Many products designed using SOAP

Performance Negative Mature
Size of message Many products designed using SOAP

Reliability Minimal Mature
Not key QA Many products designed using SOAP

Scalability Positive Adolescent
Messages can grow as big as needed Anticipate growth related to this QA

Security Minimal Mature
Not key QA Many products designed using SOAP

Testability Minimal Mature
Not key QA Many products designed using SOAP

Usability Negative Mature
Size of message and need for tools Many products designed using SOAP

Impact Average: 0.15 Maturity Average: 0.77

20 CMU/SEI-2006-TN-001

WS Standard: SOAP MTOM and/or XOP and/or SWA
Organization: W3C, Ver: v0.0r 1/05

Impact Maturity

Adaptability Positive Immature
Fields can be changed in the message SWA dying, waiting for MTOM/XOP

Auditability Negative Immature
May be difficult to audit optimized
messages

SWA dying, waiting for MTOM/XOP

Availability Minimal Adolescent
Not key QA Either method won't be affected much

Extensibility Positive Immature
Easily add fields and formatting to
messages

SWA dying, waiting for MTOM/XOP

Interoperability Positive Immature
Defines rules that must be followed SWA dying, waiting for MTOM/XOP

Modifiability Positive Adolescent
Underlying applications can change Either method won't be affected much

Operability and
Deployability

Negative Immature

Not all actors in an SOA may be using
MTOM

SWA dying, waiting for MTOM/XOP

Performance Positive Immature
Designed to optimize transmission of
messages

SWA dying, waiting for MTOM/XOP

Reliability Minimal Adolescent
Not key QA Either method won't be affected much

Scalability Positive Immature
Messages can grow but reduces size of
messages

SWA dying, waiting for MTOM/XOP

Security Negative Immature
Optimizations can be changed by
intermediaries

SWA dying, waiting for MTOM/XOP

Testability Negative Immature
Difficulty in testing optimizations SWA dying, waiting for MTOM/XOP

Usability Minimal Adolescent
Not key QA Either method won't be affected much

Impact Average: 0.15 Maturity Average: -0.69

CMU/SEI-2006-TN-001 21

WS Standard: Universal Description Discovery & Integration (UDDI)
Organization: OASIS, Ver: v3.0 3/05

Impact Maturity

Adaptability Positive Mature
Provides structures for defining multiple
taxonomies

Third version, should be stable for this QA

Auditability Minimal Adolescent
Not key QA Anticipate improvements for this QA.

Availability Minimal Mature
Does not guarantee the services will be
available - just lists who is providing
them

Third version, should be stable for this QA

Extensibility Positive Mature
UDDI registries can be extended Third version, should be stable for this QA

Interoperability Positive Mature
Part of the foundational infrastructure for
interoperable services

Third version, should be stable for this QA

Modifiability Minimal Mature
Not key QA Third version, should be stable for this QA

Operability and
Deployability

Positive Mature

Allows various mechanisms for the
publishers to add entries and users to
access them

Third version, should be stable for this QA

Performance Negative Adolescent
Not clear what the performance of the
UDDI registry is

Anticipate improvements for this QA.

Reliability Minimal Mature
Does not guarantee reliability of the
underlying services

Third version, should be stable for this QA

Scalability Positive Adolescent
Can handle increasing numbers of
services

Anticipate improvements for this QA.

Security Minimal Adolescent
Needs additional security mechanisms
to be in place

Anticipate improvements for this QA.

Testability Minimal Adolescent
Not key QA Anticipate improvements for this QA.

Usability Positive Mature
Allows searching for a particular service Third version, should be stable for this QA

Impact Average: 0.38 Maturity Average: 0.62

22 CMU/SEI-2006-TN-001

WS Standard: Web Service Transfer (WS-Transfer)
Organization: Other, Ver: v0.0 9/04

Impact Maturity

Adaptability Positive Adolescent
Allows for change in a resource's
representation

Although not widely implemented, standard is
simple

Auditability Negative Immature
May be difficult to track use of resources
for audit purposes

Important QA so it might change

Availability Minimal Adolescent
Positively or negatively affect the
resources available to a service

Although not widely implemented, standard is
simple

Extensibility Positive Adolescent
Allows for change in a resource's
representation

Although not widely implemented, standard is
simple

Interoperability Minimal Adolescent
Not key QA Although not widely implemented, standard is

simple

Modifiability Positive Adolescent
Allows for dynamic change of resource
specifications

Although not widely implemented, standard is
simple

Operability and
Deployability

Minimal Adolescent

Allows for deletion and reestablishment
of resources

Although not widely implemented, standard is
simple

Performance Negative Immature
Removal of resources can impact
performance

Performance is important so standard might
change

Reliability Minimal Adolescent
Not key QA Although not widely implemented, standard is

simple

Scalability Minimal Adolescent
Not key QA Although not widely implemented, standard is

simple

Security Negative Immature
Allows for manipulation of a server's
resources and change in resource
specification

Security may force changes relative to this QA

Testability Negative Immature
May be difficult to test the various
resource scenarios

Testing is difficult across services

Usability Positive Adolescent
Allows for changes in resources which
can have a positive impact on user

Although not widely implemented, protocol is
simple

Impact Average: 0.00 Maturity Average: -0.31

CMU/SEI-2006-TN-001 23

WS Standard: Web Services Atomic Transaction (WS-AtomicTransaction)
Organization: W3C, Ver: v1.0 8/05

Impact Maturity

Adaptability Positive Adolescent
Allows more complex transactions to be
built

Recently submitted but all the major players
support this standard

Auditability Negative Immature
Difficult to audit potential failures Key QA so anticipate changes

Availability Minimal Adolescent
Not key QA Recently submitted but all the major players

support this standard

Extensibility Positive Immature
Allows more complex transactions to be
built

Key QA so anticipate changes

Interoperability Positive Immature
Existing transaction systems can
interoperate across HW and SW vendors

Key QA so anticipate changes

Modifiability Minimal Adolescent
Not key QA Recently submitted but all the major players

support this standard

Operability and
Deployability

Minimal Adolescent

Provide consistent failure and recovery
semantics

Recently submitted but all the major players
support this standard

Performance Negative Adolescent
Does not guarantee performance of
entire transaction

Recently submitted but all the major players
support this standard

Reliability Positive Immature
With other standards, guarantees
consistent transactions

Key QA so anticipate changes

Scalability Minimal Adolescent
Not key QA Recently submitted but all the major players

support this standard

Security Minimal Adolescent
Not key QA Recently submitted but all the major players

support this standard

Testability Negative Immature
Difficulty to test various transaction
failure scenarios

Key QA so anticipate changes

Usability Positive Adolescent
With other standards, guarantees
consistent transactions

Recently submitted but all the major players
support this standard

Impact Average: 0.15 Maturity Average: -0.38

24 CMU/SEI-2006-TN-001

WS Standard: Web Services Business Activity Framework (WS-BusinessActivity)
Organization: Other, Ver: v1.0 8/05

Impact Maturity

Adaptability Positive Immature
Can handle changing business process
interoperation

3rd version in a couple of years. Not
submitted yet.

Auditability Negative Immature
More items need to be setup for auditing 3rd version in a couple of years. Not

submitted yet.

Availability Minimal Adolescent
Not key QA Although not submitted, has strong backing

and this QA probably won't change

Extensibility Positive Immature
Can handle multiple business processes 3rd version in a couple of years. Not

submitted yet.

Interoperability Positive Immature
Provides standards for business process
to interoperate across different vendor
implementations

3rd version in a couple of years. Not
submitted yet.

Modifiability Minimal Adolescent
Not key QA Although not submitted, has strong backing

and this QA probably won't change

Operability and
Deployability

Minimal Adolescent

Not key QA Although not submitted, has strong backing
and this QA probably won't change

Performance Negative Immature
More coordination of the business
processes, storing of state and metadata

3rd version in a couple of years. Not
submitted yet.

Reliability Positive Adolescent
Defines coordination type for handling
exceptions

Although not submitted, has strong backing
and this QA probably won't change

Scalability Minimal Adolescent
Not key QA Although not submitted, has strong backing

and this QA probably won't change

Security Negative Immature
Trust boundaries have to be established 3rd version in a couple of years. Not

submitted yet.

Testability Minimal Adolescent
Not key QA Although not submitted, has strong backing

and this QA probably won't change

Usability Positive Immature
Provides mechanisms for handling
exceptions in business processes

3rd version in a couple of years. Not
submitted yet.

Impact Average: 0.15 Maturity Average: -0.54

CMU/SEI-2006-TN-001 25

WS Standard: Web Services Business Process Execution Language (WSBPEL)
Organization: OASIS, Ver: v2.0cd 8/05

Impact Maturity

Adaptability Positive Adolescent
Describes various mechanisms for
defining business processes

Has wide support but is actively being
changed

Auditability Negative Immature
More items will need to be audited with
little support provided

This QA is important and needs work

Availability Minimal Adolescent
Not key QA Has wide support but is actively being

changed

Extensibility Positive Adolescent
New processes can be added using the
standard

Has wide support but is actively being
changed

Interoperability Positive Adolescent
Allows for coordination and sharing of
information between web services

Has wide support but is actively being
changed

Modifiability Minimal Adolescent
Not key QA Has wide support but is actively being

changed

Operability and
Deployability

Minimal Adolescent

Not key QA Has wide support but is actively being
changed

Performance Negative Immature
More messages required to support the
process

This QA is important and needs work

Reliability Minimal Adolescent
Does nothing to ensure the reliability of
the underlying services

Has wide support but is actively being
changed

Scalability Minimal Adolescent
Not key QA Has wide support but is actively being

changed

Security Negative Immature
Does not ensure security level of the
underlying services

This QA is important and needs work

Testability Minimal Adolescent
Not key QA Has wide support but is actively being

changed

Usability Positive Immature
The level of automation of business
processes can be increased by
development of tools

This QA is important and needs work

Impact Average: 0.08 Maturity Average: -0.31

26 CMU/SEI-2006-TN-001

WS Standard: Web Services Choreography Description Language (WS-CDL)
Organization: W3C, Ver: v0.0wd 9/05

Impact Maturity

Adaptability Positive Immature
An organization can change underlying
implementation provided it does not
change the Choreography

Still in draft, key QA so anticipate change

Auditability Negative Immature
More items need to be audited Still in draft, key QA so anticipate change

Availability Minimal Immature
Not key QA Still in draft but still anticipate change

Extensibility Positive Immature
An organization can change underlying
implementation of its part of the
Choreography

Still in draft, key QA so anticipate change

Interoperability Positive Immature
Provides for interoperability between
organizations through standards

Still in draft, key QA so anticipate change

Modifiability Minimal Immature
Not key QA Still in draft but still anticipate change

Operability and
Deployability

Minimal Immature

Not key QA Still in draft but still anticipate change

Performance Negative Immature
More message traffic Still in draft, key QA so anticipate change

Reliability Minimal Immature
Does not guarantee reliability of
underlying services

Still in draft, key QA so anticipate change

Scalability Minimal Immature
Not key QA Still in draft, key QA so anticipate change

Security Negative Immature
More places where security can be
affected

Still in draft, key QA so anticipate change

Testability Minimal Immature
Not key QA Still in draft but still anticipate change

Usability Minimal Immature
Not key QA Still in draft but still anticipate change

Impact Average: 0.00 Maturity Average: -1.00

CMU/SEI-2006-TN-001 27

WS Standard: Web Services Context (WS-Context)
Organization: Other, Ver: v1.0d 10/05

Impact Maturity

Adaptability Positive Immature
Allows support for newly emerging
standards such as workflow and
transactions

Recent draft, key QA so anticipate change

Auditability Negative Immature
Difficult in auditing which services affect
a shared context

Recent draft, key QA so anticipate change

Availability Minimal Immature
Not key QA Recent draft but still anticipate change

Extensibility Positive Immature
Allows new services and applications to
be added

Recent draft, key QA so anticipate change

Interoperability Positive Immature
Allows for multiple services to share a
common context

Recent draft, key QA so anticipate change

Modifiability Minimal Immature
Not key QA Recent draft but still anticipate change

Operability and
Deployability

Minimal Immature

Not key QA Recent draft but still anticipate change

Performance Negative Immature
More message traffic and requires and
context resource manager

Recent draft, key QA so anticipate change

Reliability Minimal Immature
Not key QA Recent draft but still anticipate change

Scalability Minimal Immature
Not key QA Recent draft but still anticipate change

Security Minimal Immature
Not key QA Recent draft but still anticipate change

Testability Minimal Immature
Not key QA Recent draft but still anticipate change

Usability Positive Immature
Allows for sharing of a context across
multiple services

Recent draft, key QA so anticipate change

Impact Average: 0.15 Maturity Average: -1.00

28 CMU/SEI-2006-TN-001

WS Standard: Web Services Coordination (WS-Coordination)
Organization: Other, Ver: v1.0 8/05

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Although new, this QA probably won't change

Auditability Minimal Adolescent
Not key QA Although new, this QA probably won't change

Availability Minimal Adolescent
Not key QA Although new, this QA probably won't change

Extensibility Positive Immature
Allows for the publication of coordination
protocols and definition of extension
elements

Recently changed, products starting to use
this standard

Interoperability Positive Immature
Allows for specifying various
coordination behaviors

Recently changed, products starting to use
this standard

Modifiability Minimal Adolescent
Not key QA Although new, this QA probably won't change

Operability and
Deployability

Positive Adolescent

Allows for control of the coordination
between applications and services

Although new, this QA probably won't change

Performance Negative Adolescent
More time needed to establish and work
through coordination protocols

Although new, this QA probably won't change

Reliability Positive Immature
Establishes a coordination protocol
between

Recently changed, products starting to use
this standard

Scalability Positive Immature
Allows for different coordination protocols Recently changed, products starting to use

this standard

Security Negative Immature
More areas where security can be
affected and needs trusted coordinator

Recently changed, products starting to use
this standard

Testability Negative Immature
More scenarios to be tested based on
the choice of different coordination
protocols

Recently changed, products starting to use
this standard

Usability Positive Immature
Provides for different coordination
protocols between applications

Recently changed, products starting to use
this standard

Impact Average: 0.23 Maturity Average: -0.54

CMU/SEI-2006-TN-001 29

WS Standard: Web Services Coordination Framework (WS-CF)
Organization: W3C, Ver: v1.0 7/03

Impact Maturity

Adaptability Minimal Immature
Not key QA Part of WS-CAF but probably won't change in

relationship to this QA

Auditability Minimal Immature
Not key QA Part of WS-CAF but probably won't change in

relationship to this QA

Availability Minimal Immature
Not key QA Part of WS-CAF but probably won't change in

relationship to this QA

Extensibility Positive Immature
Allows for static and dynamic tailoring to
fit any context

Part of WS-CAF which is actively being
changed

Interoperability Positive Immature
Defines a generic coordination service
that applications and services can use

Part of WS-CAF which is actively being
changed

Modifiability Minimal Immature
Not key QA Part of WS-CAF but probably won't change in

relationship to this QA

Operability and
Deployability

Positive Immature

Help to achieve coordination between
applications and services

Part of WS-CAF which is actively being
changed

Performance Negative Immature
More message traffic Part of WS-CAF which is actively being

changed

Reliability Positive Immature
Once coordination is established
provides more reliable communication

Part of WS-CAF which is actively being
changed

Scalability Positive Immature
Allows for different coordination protocols Part of WS-CAF which is actively being

changed

Security Negative Immature
More areas where security could be
affected

Part of WS-CAF which is actively being
changed

Testability Minimal Immature
Not key QA Part of WS-CAF which is actively being

changed

Usability Positive Immature
Allows for better coordination between
services and applications

Part of WS-CAF which is actively being
changed

Impact Average: 0.31 Maturity Average: -1.00

30 CMU/SEI-2006-TN-001

WS Standard: Web Services Description Language (WSDL)
Organization: W3C, Ver: v2.0d 8/05

Impact Maturity

Adaptability Positive Mature
Service description in WSDL can be
adapted to meet changing needs

One of the first standards, widely
implemented

Auditability Minimal Mature
Not key QA One of the first standards, widely

implemented

Availability Minimal Mature
Not key QA One of the first standards, widely

implemented

Extensibility Positive Adolescent
Service description in WSDL can be
extended as the service interface
changes

May change related to this QA

Interoperability Positive Adolescent
Allows for the definition of services
across multiple environments

May change related to this QA

Modifiability Minimal Mature
Not key QA One of the first standards, widely

implemented

Operability and
Deployability

Positive Mature

A key piece of infrastructure for
operation of services

One of the first standards, widely
implemented

Performance Negative Adolescent
Messages have to packed and unpacked May change related to this QA

Reliability Minimal Mature
Not key QA One of the first standards, widely

implemented

Scalability Minimal Mature
Not key QA One of the first standards, widely

implemented

Security Minimal Adolescent
Not key QA May change related to this QA

Testability Minimal Mature
Not key QA One of the first standards, widely

implemented

Usability Minimal Mature
Not key QA One of the first standards, widely

implemented

Impact Average: 0.23 Maturity Average: 0.69

CMU/SEI-2006-TN-001 31

WS Standard: Web Services Distributed Management (WSDM)
Organization: OASIS, Ver: v1.0 3/05

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Released recently and anticipate change

Auditability Positive Immature
Limits the way that IT resources can be
managed and thus the audit trail

Key QA, anticipate change

Availability Positive Immature
Provides for monitoring and enforcing a
service level agreement

Key QA, anticipate change

Extensibility Minimal Adolescent
Not key QA Released recently and anticipate change

Interoperability Positive Immature
Provides for management of IT
resources using web services and use
of WS standards

Key QA, anticipate change

Modifiability Minimal Adolescent
Not key QA Released recently and anticipate change

Operability and
Deployability

Positive Immature

Provides for monitoring and enforcing a
service level agreement

Key QA, anticipate change

Performance Minimal Adolescent
Not key QA Released recently (2005). This area could

change as needed

Reliability Positive Adolescent
Provides for monitoring and enforcing a
service level agreement

Released recently (2005). This area could
change as needed

Scalability Positive Immature
Can handle a number of IT resources Key QA, anticipate change

Security Positive Adolescent
Limits the way that IT resources can be
managed

Released recently (2005). This area could
change as needed

Testability Minimal Immature
Not key QA Key QA, anticipate change

Usability Minimal Immature
Not key QA Key QA, anticipate change

Impact Average: 0.54 Maturity Average: -0.54

32 CMU/SEI-2006-TN-001

WS Standard: Web Services Dynamic Discovery (WS-Discovery)
Organization: Other, Ver: v0.0 4/05

Impact Maturity

Adaptability Minimal Immature
Not key QA Not key QA but still in draft

Auditability Minimal Immature
Not key QA Not key QA but still in draft

Availability Positive Immature
Dynamically locates service by type but
does not provide information on the
service's availability

Key QA and still in draft

Extensibility Positive Immature
Provides extensibility for more
sophisticated and unanticipated
scenarios

Key QA and still in draft

Interoperability Positive Immature
Allows for discovery of service with a
minimum of networking support

Key QA and still in draft

Modifiability Minimal Immature
Not key QA Not key QA but still in draft

Operability and
Deployability

Minimal Immature

Not key QA Not key QA but still in draft

Performance Negative Immature
Not clear how long it takes to
dynamically discover services

Difficult QA and still in draft

Reliability Minimal Immature
Not key QA Not key QA but still in draft

Scalability Positive Immature
Allows for scaling to a large number of
endpoints

Key QA and still in draft

Security Minimal Immature
Not key QA: needs other standards Not key QA but still in draft

Testability Negative Immature
Difficult to test dynamic discovery
situations

Difficult QA and still in draft

Usability Minimal Immature
Not key QA Not key QA but still in draft

Impact Average: 0.15 Maturity Average: -1.00

CMU/SEI-2006-TN-001 33

WS Standard: Web Services Enumeration (WS-Enumeration)
Organization: Other, Ver: v0.0 9/04

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Not implemented widely but unlike to change

relative to this QA

Auditability Negative Immature
Difficult to audit how large data sets are
handled

Year old and not implemented widely

Availability Minimal Adolescent
Not key QA Not implemented widely but unlike to change

relative to this QA

Extensibility Positive Immature
Allows for more information to be
passed in a standard way

Year old and not implemented widely

Interoperability Positive Immature
Allows for better management of large
shared data sets

Year old and not implemented widely

Modifiability Minimal Adolescent
Not key QA Not implemented widely but unlike to change

relative to this QA

Operability and
Deployability

Minimal Adolescent

Not key QA Not implemented widely but unlike to change
relative to this QA

Performance Minimal Immature
Not key QA Always looking for performance improvements

Reliability Minimal Adolescent
Not key QA Not implemented widely but unlike to change

relative to this QA

Scalability Positive Immature
Allows for handling larger data sets Year old and not implemented widely

Security Negative Immature
More places for security to be impacted Year old and not implemented widely

Testability Negative Immature
Difficult to test different enumerations
and to find one that works well

Year old and not implemented widely

Usability Positive Immature
Better handling of data sets Year old and not implemented widely

Impact Average: 0.08 Maturity Average: -0.62

34 CMU/SEI-2006-TN-001

WS Standard: Web Services Eventing (WS-Eventing)
Organization: Other, Ver: v0.0 9/04

Impact Maturity

Adaptability Positive Immature
Enables change in underlying
mechanisms

Battling with WS-Notification and last version
is 2004

Auditability Negative Immature
More items that may need to be audited Battling with WS-Notification and last version

is 2004

Availability Negative Immature
Does nothing to guarantee underlying
events

Battling with WS-Notification and last version
is 2004

Extensibility Positive Immature
Allows for more sophisticated and
unanticipated subscription scenarios

Battling with WS-Notification and last version
is 2004

Interoperability Positive Immature
Does not rely on a particular mechanism
/ defines a standard for notification

Battling with WS-Notification and last version
is 2004

Modifiability Minimal Immature
Not key QA Battling with WS-Notification and last version

is 2004

Operability and
Deployability

Positive Immature

Allows subscriber define the way
messages are delivered

Battling with WS-Notification and last version
is 2004

Performance Negative Immature
More message between providers and
users

Battling with WS-Notification and last version
is 2004

Reliability Negative Immature
Does nothing to guarantee reliability of
underlying events

Battling with WS-Notification and last version
is 2004

Scalability Positive Immature
Standard way to specify subscription
and notification

Battling with WS-Notification and last version
is 2004

Security Negative Immature
Need to leverage other specifications Battling with WS-Notification and last version

is 2004

Testability Negative Immature
More
specifications/scenarios/mechanisms
that need to be tested

Battling with WS-Notification and last version
is 2004

Usability Positive Immature
Standard way to specify subscription
and notification

Battling with WS-Notification and last version
is 2004

Impact Average: 0.00 Maturity Average: -1.00

CMU/SEI-2006-TN-001 35

WS Standard: Web Services Federation Language (WS-Federation)
Organization: Other, Ver: v1.0 7/03

Impact Maturity

Adaptability Positive Immature
Service Users are required to know
more about what security mechanisms
providers are using.

Not implemented widely and it interacts with
3 other standards

Auditability Negative Immature
More information and scenarios to audit Not implemented widely and it interacts with

3 other standards

Availability Minimal Adolescent
Not key QA Not implemented widely but unlikely to be

modified relative to this QA

Extensibility Minimal Adolescent
Not key QA Not implemented widely but unlikely to be

modified relative to this QA

Interoperability Positive Immature
Allows for multiple system to interact Not implemented widely and it interacts with

3 other standards

Modifiability Minimal Adolescent
Not key QA Not implemented widely but unlikely to be

modified relative to this QA

Operability and
Deployability

Minimal Adolescent

Not key QA Not implemented widely but unlikely to be
modified relative to this QA

Performance Negative Immature
More messages between users and
providers

Not implemented widely and it interacts with
3 other standards

Reliability Minimal Adolescent
Not key QA Not implemented widely but unlikely to be

modified relative to this QA

Scalability Positive Immature
Can handle multiple systems Not implemented widely and it interacts with

3 other standards

Security Positive Immature
Allows for a variety of security
mechanisms to be used

Not implemented widely and it interacts with
3 other standards

Testability Negative Immature
Difficult to test scenarios for how
systems will be federated

Not implemented widely and it interacts with
3 other standards

Usability Minimal Adolescent
Not key QA Not implemented widely but unlikely to be

modified relative to this QA

Impact Average: 0.08 Maturity Average: -0.54

36 CMU/SEI-2006-TN-001

WS Standard: Web Services for Remote Portlets (WSRP)
Organization: OASIS, Ver: v2.0d 10/05

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Although in draft, this QA not likely to change

Auditability Minimal Adolescent
Not key QA Although in draft, this QA not likely to change

Availability Minimal Adolescent
Not key QA Although in draft, this QA not likely to change

Extensibility Positive Immature
New interfaces and portlets can be
added

Key QA, anticipate change

Interoperability Positive Immature
Provides well-defined interfaces for
pluggable presentation-oriented web
services

Key QA, anticipate change

Modifiability Positive Adolescent
Built using existing standards Although in draft, this QA not likely to change

Operability and
Deployability

Positive Immature

Allows integration of new portlets in a
portal without the need for custom
coding or deployment activities

Key QA, anticipate change

Performance Negative Immature
Allows end-user to interact directly with
service

Key QA, anticipate change

Reliability Minimal Adolescent
Not key QA Although in draft, this QA not likely to change

Scalability Minimal Adolescent
Not key QA Although in draft, this QA not likely to change

Security Negative Immature
Allows more interfaces and services to
be used with more areas for security to
be affected

Key QA, anticipate change

Testability Minimal Adolescent
Not key QA Although in draft, this QA not likely to change

Usability Positive Adolescent
Directly targeted to end-user
presentation web services

Although in draft, this QA not likely to change

Impact Average: 0.23 Maturity Average: -0.38

CMU/SEI-2006-TN-001 37

WS Standard: Web Services Inspection Language (WS-Inspection)
Organization: Other, Ver: v1.0 11/01

Impact Maturity

Adaptability Positive Immature
Can allow the users to pick and choose
which descriptions they want to use

Key QA but no activity since 2001

Auditability Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Availability Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Extensibility Positive Immature
Can add new repositories of
descriptions as they become available

Key QA but no activity since 2001

Interoperability Positive Immature
Provides mechanisms for referencing
and utilizing existing repositories of
service descriptions

Key QA but no activity since 2001

Modifiability Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Operability and
Deployability

Minimal Adolescent

Not key QA Not key QA and also no activity since 2001

Performance Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Reliability Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Scalability Minimal Immature
Not key QA Key QA but no activity since 2001

Security Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Testability Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Usability Minimal Adolescent
Not key QA Not key QA and also no activity since 2001

Impact Average: 0.23 Maturity Average: -0.31

38 CMU/SEI-2006-TN-001

WS Standard: Web Services Metadata Exchange (WS-MetadataExchange)
Organization: Other, Ver: v0.0 09/04

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Unlikely to change relative to this QA but still

not clearly specified

Auditability Minimal Immature
Not key QA Not key QA, not clearly specified

Availability Minimal Adolescent
Not key QA Unlikely to change relative to this QA but still

not clearly specified

Extensibility Positive Immature
Allows for different types of metadata
about a service to be retrieved

Key QA, spec not submitted yet

Interoperability Positive Immature
Allow for exchange of metadata between
services and various users

Key QA, spec not submitted yet

Modifiability Minimal Immature
Not key QA Not key QA, not clearly specified

Operability and
Deployability

Minimal Immature

Not key QA Not key QA, not clearly specified

Performance Minimal Immature
Not key QA Not key QA, not clearly specified

Reliability Minimal Adolescent
Not key QA Unlikely to change relative to this QA but still

not clearly specified

Scalability Minimal Immature
Not key QA Not key QA, not clearly specified

Security Minimal Immature
May have security implications if all
metadata about a service can be
retrieved

Not key QA, not clearly specified

Testability Minimal Immature
Not key QA Not key QA, not clearly specified

Usability Minimal Adolescent
Not key QA Unlikely to change relative to this QA but still

not clearly specified

Impact Average: 0.15 Maturity Average: -0.69

CMU/SEI-2006-TN-001 39

WS Standard: Web Services Notification (WSN)
Organization: OASIS, Ver: v1.3d 7/05

Impact Maturity

Adaptability Minimal Immature
Not key QA Battling with WS-Eventing and last version is

2004

Auditability Negative Immature
Another piece to audit Battling with WS-Eventing and last version is

2004

Availability Minimal Immature
Not key QA Battling with WS-Eventing and last version is

2004

Extensibility Minimal Immature
Not key QA Battling with WS-Eventing and last version is

2004

Interoperability Positive Immature
Standardizes how notifications are
handled

Battling with WS-Eventing and last version is
2004

Modifiability Minimal Immature
Not key QA Battling with WS-Eventing and last version is

2004

Operability and
Deployability

Positive Immature

Allows for standard way for notifying
interested parties on topics

Battling with WS-Eventing and last version is
2004

Performance Negative Immature
Increase in number of messages Battling with WS-Eventing and last version is

2004

Reliability Negative Immature
Lots of actors in an SOA have to be
using the standard

Battling with WS-Eventing and last version is
2004

Scalability Positive Immature
Use standards across an SOA Battling with WS-Eventing and last version is

2004

Security Negative Immature
More places for security to be impacted Battling with WS-Eventing and last version is

2004

Testability Negative Immature
Adds additional items that need to be
tested

Battling with WS-Eventing and last version is
2004

Usability Positive Immature
Standardizes notification on topics Battling with WS-Eventing and last version is

2004

Impact Average: -0.08 Maturity Average: -1.00

40 CMU/SEI-2006-TN-001

WS Standard: Web Services Policy Attachment (WS-PolicyAttachment)
Organization: Other, Ver: v0.0 9/04

Impact Maturity

Adaptability Positive Immature
The attachment of policies to service
can be altered

Key QA but not submitted yet

Auditability Minimal Immature
Not key QA Not key QA but likely to change to improve

auditing

Availability Minimal Adolescent
Not key QA Not key QA, probably won't change

Extensibility Positive Immature
Allows for multiple policies to be
attached to a service

Key QA but not submitted yet

Interoperability Positive Immature
Defines mechanisms for associating
policies with services

Key QA but not submitted yet

Modifiability Positive Immature
The set of policies attached to a service
can be changed

Key QA but not submitted yet

Operability and
Deployability

Minimal Adolescent

Not key QA Not key QA, probably won't change

Performance Negative Adolescent
May have a performance hit if multiple
policies are attached to a service and
the effective policy needs to be identified

Not key QA, probably won't change

Reliability Minimal Adolescent
Not key QA Not key QA, probably won't change

Scalability Minimal Adolescent
Not key QA Not key QA, probably won't change

Security Positive Adolescent
Allows for a security policy to be
associated with a service

Base standard, probably won't change

Testability Negative Immature
Difficult to test all of the policies
attached to a service and how they are
handled

Not key QA but likely to change to improve
testing

Usability Minimal Adolescent
Not key QA Not key QA, probably won't change

Impact Average: 0.23 Maturity Average: -0.46

CMU/SEI-2006-TN-001 41

WS Standard: Web Services Policy Framework (WS-Policy)
Organization: Other, Ver: v0.0 9/04

Impact Maturity

Adaptability Positive Immature
Policies can be adapted based on
changes in the services

Key QA but not submitted yet

Auditability Minimal Adolescent
Not key QA Although not submitted, unlikely to change

relative to this QA

Availability Minimal Adolescent
Not key QA Although not submitted, unlikely to change

relative to this QA

Extensibility Positive Adolescent
Policies can extended when new
capabilities are added

Although not submitted yet, designed to be
extensible

Interoperability Positive Immature
Provides for a standard way of defining
capabilities, requirements and
characteristics of services

Key QA but not submitted yet

Modifiability Positive Immature
The underlying policies can be changed
easily

Key QA but not submitted yet

Operability and
Deployability

Positive Immature

Allows for the description of capabilities,
requirements and characteristics of
services

Key QA but not submitted yet

Performance Negative Adolescent
Possibly more message traffic between
a service provider and user

Unlikely to change to improve performance

Reliability Minimal Adolescent
Not key QA Although not submitted, unlikely to change

relative to this QA

Scalability Minimal Adolescent
Not key QA Although not submitted, unlikely to change

relative to this QA

Security Positive Adolescent
Can be used to define security policy
and dynamically interpreted

Base standard that seems extensible enough

Testability Negative Immature
Testing that a service meets stated
policies may be difficult

Not key QA but improvement needed for
testing

Usability Minimal Adolescent
Not key QA Although not submitted, unlikely to change

relative to this QA

Impact Average: 0.31 Maturity Average: -0.38

42 CMU/SEI-2006-TN-001

WS Standard: Web Services Reliable Messaging (WS-Reliability)
Organization: OASIS, Ver: v1.1 11/04

Impact Maturity

Adaptability Positive Immature
Different network transportation
technologies can be used

Battling with WS-ReliableMessaging, major
companies on both sides

Auditability Minimal Immature
Not key QA Battling with WS-ReliableMessaging, major

companies on both sides

Availability Positive Immature
Overcomes network and software
component failures

Battling with WS-ReliableMessaging, major
companies on both sides

Extensibility Minimal Immature
Not key QA Battling with WS-ReliableMessaging, major

companies on both sides

Interoperability Minimal Immature
Not key QA Battling with WS-ReliableMessaging, major

companies on both sides

Modifiability Minimal Immature
Not key QA Battling with WS-ReliableMessaging, major

companies on both sides

Operability and
Deployability

Positive Immature

Overcomes problems with failures Battling with WS-ReliableMessaging, major
companies on both sides

Performance Negative Immature
Increases size of messages Battling with WS-ReliableMessaging, major

companies on both sides

Reliability Positive Immature
Key QA - provides reliable messaging Battling with WS-ReliableMessaging, major

companies on both sides

Scalability Minimal Immature
Not key QA Battling with WS-ReliableMessaging, major

companies on both sides

Security Minimal Immature
Acknowledgement of message reaching
destination

Battling with WS-ReliableMessaging, major
companies on both sides

Testability Negative Immature
Difficulties in testing failure scenarios Battling with WS-ReliableMessaging, major

companies on both sides

Usability Positive Immature
Overcomes problems with failures Battling with WS-ReliableMessaging, major

companies on both sides

Impact Average: 0.23 Maturity Average: -1.00

CMU/SEI-2006-TN-001 43

WS Standard: Web Services Reliable Messaging Protocol (WS-ReliableMessaging)
Organization: OASIS, Ver: v1.0 2/05

Impact Maturity

Adaptability Positive Immature
Different network transport technologies
can be used

Battling with WS-Reliability, major companies
on both sides

Auditability Minimal Immature
Not key QA Battling with WS-Reliability, major companies

on both sides

Availability Positive Immature
Overcomes problems with failures Battling with WS-Reliability, major companies

on both sides

Extensibility Minimal Immature
Not key QA Battling with WS-Reliability, major companies

on both sides

Interoperability Minimal Immature
Not key QA Battling with WS-Reliability, major companies

on both sides

Modifiability Minimal Immature
Not key QA Battling with WS-Reliability, major companies

on both sides

Operability and
Deployability

Positive Immature

Overcomes problems with failures Battling with WS-Reliability, major companies
on both sides

Performance Negative Immature
Increases size of messages Battling with WS-Reliability, major companies

on both sides

Reliability Positive Immature
Overcomes failures in networks and
software components

Battling with WS-Reliability, major companies
on both sides

Scalability Minimal Immature
Not key QA Battling with WS-Reliability, major companies

on both sides

Security Minimal Immature
Not key QA Battling with WS-Reliability, major companies

on both sides

Testability Negative Immature
Difficulties in testing failure scenarios Battling with WS-Reliability, major companies

on both sides

Usability Positive Immature
Overcomes problems with failures Battling with WS-Reliability, major companies

on both sides

Impact Average: 0.23 Maturity Average: -1.00

44 CMU/SEI-2006-TN-001

WS Standard: Web Services Resource (WS-Resource)
Organization: OASIS, Ver: v1.2d 10/05

Impact Maturity

Adaptability Minimal Immature
Not key QA Although not key QA, standard is in an active

working group

Auditability Minimal Immature
Not key QA Although not key QA, standard is in an active

working group

Availability Minimal Adolescent
Does not guarantee availability of
resource

Not key QA and is not likely to change

Extensibility Positive Immature
Extensions can be made to the existing
resource handling

Key QA and still in active working group

Interoperability Positive Immature
Provides a standard mechanism for
describing resources across
organizations

Key QA and still in active working group

Modifiability Minimal Immature
Not key QA Although not key QA, standard is in an active

working group

Operability and
Deployability

Positive Immature

Allows for aggregation of resource and
service information into dictionaries
which can be published

Key QA and still in active working group

Performance Minimal Adolescent
Not key QA Not key QA and is not likely to change

Reliability Minimal Adolescent
Not key QA Not key QA and is not likely to change

Scalability Positive Immature
New resources can be added Key QA and still in active working group

Security Minimal Immature
Not key QA Although not key QA, standard is in an active

working group

Testability Minimal Adolescent
Not key QA Not key QA and is not likely to change

Usability Positive Immature
Provides for standardized forms of
messages for interacting with a resource

Key QA and still in active working group

Impact Average: 0.38 Maturity Average: -0.69

CMU/SEI-2006-TN-001 45

WS Standard: Web Services Secure Conversation Language (WS-
SecureConversation)

Organization: Other, Ver: v0.0 2/05
Impact Maturity

Adaptability Minimal Adolescent
Not key QA Not submitted yet but unlikely to be modified

relative to this QA

Auditability Minimal Immature
Not key QA 4 years and not submitted yet

Availability Minimal Immature
Not key QA 4 years and not submitted yet

Extensibility Minimal Adolescent
Not key QA Not submitted yet but unlikely to be modified

relative to this QA

Interoperability Positive Immature
Defines standard for handling security
across systems

4 years and not submitted yet

Modifiability Minimal Immature
Not key QA 4 years and not submitted yet

Operability and
Deployability

Minimal Immature

Not key QA 4 years and not submitted yet

Performance Minimal Immature
Not key QA 4 years and not submitted yet

Reliability Minimal Adolescent
Not key QA Not submitted yet but unlikely to be modified

relative to this QA

Scalability Minimal Adolescent
Not key QA Not submitted yet but unlikely to be modified

relative to this QA

Security Positive Immature
Establishes context, sharing and
session keys

4 years and not submitted yet

Testability Negative Immature
More scenarios for testing 4 years and not submitted yet

Usability Minimal Immature
Not key QA 4 years and not submitted yet

Impact Average: 0.08 Maturity Average: -0.69

46 CMU/SEI-2006-TN-001

WS Standard: Web Services Security (WS-Security)
Organization: OASIS, Ver: 1.0 3/04

Impact Maturity

Adaptability Minimal Mature
Not key QA Widely implemented

Auditability Negative Adolescent
More information needs to be audited As auditing is addressed better, changes

might happen

Availability Minimal Mature
Establish secure communication but no
guarantee of service failure

Widely implemented

Extensibility Positive Mature
Security messages are extensible and
additional fields can be added

Widely implemented

Interoperability Positive Mature
Allows for loose or tightly coupled
systems, requires policies to be well
defined

Widely implemented

Modifiability Positive Mature
Underlying service can change without
change in message

Widely implemented

Operability and
Deployability

Minimal Mature

Not key QA Widely implemented

Performance Negative Adolescent
Additional message and increased size Always looking for ways to improve

performance

Reliability Positive Mature
Establish secure communication Widely implemented

Scalability Minimal Mature
Not key QA Widely implemented

Security Positive Adolescent
Built for confidential message
transmission

Although widely implemented, this key QA
may be affected

Testability Negative Adolescent
More messages and scenarios to be
tested

As testing is addressed better, changes
might happen

Usability Minimal Mature
Not key QA Widely implemented

Impact Average: 0.15 Maturity Average: 0.69

CMU/SEI-2006-TN-001 47

WS Standard: Web Services Security Policy Language (WS-SecurityPolicy)
Organization: Other, Ver: v1.1 7/05

Impact Maturity

Adaptability Negative Immature
Need to rewrite engine to support
additional specification mechanisms

Recently released, relies on other immature
standards

Auditability Negative Immature
Difficulty in auditing multiple policies and
underlying security

Recently released, relies on other immature
standards

Availability Minimal Adolescent
Not key QA Although recently released, unlikely to

change relative to this QA

Extensibility Positive Immature
Can be extended to handle additional
security specifications

Recently released, relies on other immature
standards

Interoperability Positive Immature
Generic to a security specification and
not confined to use WS-Security

Recently released, relies on other immature
standards

Modifiability Negative Immature
Have to be re-implemented for each
security spec to verify policy

Recently released, relies on other immature
standards

Operability and
Deployability

Minimal Adolescent

Not key QA Although recently released, unlikely to
change relative to this QA

Performance Negative Immature
More messages and increase in
message size

Although recently released, performance
improvements are unlikely

Reliability Minimal Adolescent
Not key QA Although recently released, unlikely to

change relative to this QA

Scalability Positive Immature
Can handle multiple specification
mechanisms

Recently released, relies on other immature
standards

Security Positive Immature
Build specifically for managing security Recently released, relies on other immature

standards

Testability Negative Immature
Difficult to test underlying security
specifications and policies

Recently released, relies on other immature
standards

Usability Minimal Adolescent
Not key QA Although recently released, unlikely to

change relative to this QA

Impact Average: -0.08 Maturity Average: -0.69

48 CMU/SEI-2006-TN-001

WS Standard: Web Services Transaction Management (WS-TXM)
Organization: OASIS, Ver: v1.0 7/03

Impact Maturity

Adaptability Minimal Immature
Not key QA Although released in 2003, it has not been

incorporated into products yet.

Auditability Minimal Immature
Not key QA Although released in 2003, it has not been

incorporated into products yet.

Availability Minimal Immature
Not key QA Although released in 2003, it has not been

incorporated into products yet.

Extensibility Positive Immature
Allows for different transaction models Although released in 2003, it has not been

incorporated into products yet.

Interoperability Positive Immature
Defines mechanisms for structuring long
running transactions across applications
and services

Although released in 2003, it has not been
incorporated into products yet.

Modifiability Minimal Immature
Not key QA Although released in 2003, it has not been

incorporated into products yet.

Operability and
Deployability

Positive Immature

Allows for long-running transactions to
be handled

Although released in 2003, it has not been
incorporated into products yet.

Performance Negative Immature
More messages and coordination
needed

Although released in 2003, it has not been
incorporated into products yet.

Reliability Positive Immature
Mechanisms for handling the reliable
execution of transactions

Although released in 2003, it has not been
incorporated into products yet.

Scalability Minimal Immature
Not key QA Although released in 2003, it has not been

incorporated into products yet.

Security Negative Immature
More places where security could be
impacted

Although released in 2003, it has not been
incorporated into products yet.

Testability Minimal Immature
Not key QA Although released in 2003, it has not been

incorporated into products yet.

Usability Minimal Immature
Not key QA Although released in 2003, it has not been

incorporated into products yet.

Impact Average: 0.15 Maturity Average: -1.00

CMU/SEI-2006-TN-001 49

WS Standard: Web Services Trust Language (WS-Trust)
Organization: Other, Ver: v0.0 2/05

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Not key QA, unlikely to change relative to this

QA

Auditability Negative Immature
More specifications and scenarios to be
audited

Key security standard, recently updated
(2005)

Availability Positive Immature
Ability to establish more trustworthy
services

Key security standard, recently updated
(2005)

Extensibility Minimal Adolescent
Not key QA Not key QA, unlikely to change relative to this

QA

Interoperability Positive Immature
Defines standards for handling secure
communications

Key security standard, recently updated
(2005)

Modifiability Minimal Adolescent
Not key QA Not key QA, unlikely to change relative to this

QA

Operability and
Deployability

Minimal Adolescent

Not key QA Not key QA, unlikely to change relative to this
QA

Performance Negative Immature
More messages may need to be
transferred

Performance may need to be improved

Reliability Minimal Adolescent
Not key QA Not key QA, unlikely to change relative to this

QA

Scalability Minimal Immature
Not key QA Scalability may need to be improved

Security Positive Immature
Extends WS-Security for secure
communication

Key security standard, recently updated
(2005)

Testability Negative Immature
More specifications and scenarios to be
tested

Key security standard, recently updated
(2005)

Usability Minimal Adolescent
Not key QA Not key QA, unlikely to change relative to this

QA

Impact Average: 0.00 Maturity Average: -0.54

50 CMU/SEI-2006-TN-001

WS Standard: WS-Addressing or WS-MessageDelivery
Organization: W3C, Ver: v0.0d 8/04

Impact Maturity

Adaptability Positive Immature
Addressing and Message delivery
options can be changed

Battle between these 2 standards

Auditability Minimal Adolescent
Not key QA Not key so neither standard will change for

this QA

Availability Positive Immature
Improves message transmission Battle between these 2 standards

Extensibility Positive Immature
Easily to add fields and formatting to
underlying SOAP message

Battle between these 2 standards

Interoperability Positive Immature
A standard way of identifying endpoints Battle between these 2 standards

Modifiability Minimal Adolescent
Not key QA Not key so neither standard will change for

this QA

Operability and
Deployability

Positive Immature

Improves reliability of message
transmissions

Battle between these 2 standards

Performance Negative Immature
Adds additional information in messages
making them larger

Battle between these 2 standards

Reliability Positive Immature
Improves reliability of message
transmission

Battle between these 2 standards

Scalability Positive Immature
Improves message transmission Battle between these 2 standards

Security Positive Immature
Secures end-to-end endpoints in
messages

Battle between these 2 standards

Testability Minimal Immature
Not key QA: but endpoint addressing
improved

Battle between these 2 standards

Usability Minimal Adolescent
Not key QA Not key so neither standard will change for

this QA

Impact Average: 0.54 Maturity Average: -0.77

CMU/SEI-2006-TN-001 51

WS Standard: XML-Encryption
Organization: W3C, Ver: rec 3/02

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Auditability Negative Immature
More information needs auditing but
information is encrypted

May be impacted by future protocols for
auditing

Availability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Extensibility Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Interoperability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Modifiability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Operability and
Deployability

Minimal Adolescent

Not key QA Older standard, not supported widely in
commercial products

Performance Negative Immature
Encryption and Decryption needed
which requires extra time to process
messages

Always looking for improvements in
performance

Reliability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Scalability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Security Positive Immature
Encryption of messages May be impacted as new security features

appear

Testability Negative Immature
More scenarios to test May be impacted as new features need to be

tested

Usability Negative Adolescent
Encryption may cause delays in user
responses

Older standard, not supported widely in
commercial products

Impact Average: -0.23 Maturity Average: -0.31

52 CMU/SEI-2006-TN-001

WS Standard: XML-Signature
Organization: W3C, Ver: rec 2/02

Impact Maturity

Adaptability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Auditability Negative Adolescent
More information and scenarios need to
be audited

Older standard, not supported widely in
commercial products

Availability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Extensibility Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Interoperability Positive Adolescent
Once keys are established XML
documents can be exchanged between
systems

Older standard, not supported widely in
commercial products

Modifiability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Operability and
Deployability

Minimal Adolescent

Not key QA: requires keys to be
allocated and managed

Older standard, not supported widely in
commercial products

Performance Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Reliability Positive Adolescent
Guarantee only user with key can
access message content

Older standard, not supported widely in
commercial products

Scalability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Security Positive Immature
Associates a key with data passed in a
message, needs additional standards

May change since it is security related

Testability Negative Adolescent
Difficulty testing without the keys sorted
out

Older standard, not supported widely in
commercial products

Usability Minimal Adolescent
Not key QA Older standard, not supported widely in

commercial products

Impact Average: 0.08 Maturity Average: -0.08

CMU/SEI-2006-TN-001 53

54 CMU/SEI-2006-TN-001

References

URLs are valid as of the publication date of this document.

[Albert 02] Albert, C. & Brownsword, L. Evolutionary Process for Integrating
COTS-Based Systems (EPIC): An Overview (CMU/SEI-2002-TR-
009, ADA405844). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports
/02tr009.html

[Bass 03] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice, Second Edition. Boston, MA: Addison-Wesley, 2003
(ISBN 0-321-15495-9).

[DAU 04] Defense Acquisition University (DAU). Defense Acquisition
Guidebook. http://akss.dau.mil/dag/DoD5000.asp (2004).

[DoD 03a] Department of Defense. DoD Directive The Defense Acquisition
System (DoD 5000.1). May 2003.

[DoD 03b] Department of Defense. DoD Instruction Operation of the Defense
Acquisition System (DoDI 5000.2). May 2003.

[DoD 05] Department of Defense. Technology Readiness Assessment (TRA)
Deskbook.
http://www.defenselink.mil/ddre/doc/tra_deskbook_2005.pdf
(2005).

[O’Brien 05] O’Brien, L.; Bass, L; & Merson, P. Quality Attributes and Service-
Oriented Architectures (CMU/SEI-2005-TN-014). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports
/05tn014.html

[SEI 05] Software Engineering Institute. Guide to Interoperability:
Procuring Interoperable Components.
http://www.sei.cmu.edu/isis/guide/engineering/procurement.htm
(2005).

CMU/SEI-2006-TN-001 55

[Smith 04] Smith, J. An Alternative to Technology Readiness Levels for Non-
Developmental Item (NDI) Software (CMU/SEI 2004-TR-013).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports
/04tr013.html

56 CMU/SEI-2006-TN-001

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

February 2006
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Acquiring Evolving Technologies: Web Services Standards
5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Harry L. Levinson, Liam O’Brien
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-TN-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Software development projects rarely are started or proceed without risks involving the technologies used.
Typically, many facets of a project such as system functionality and tool support depend on the availability of
a specific technology. This dependency poses risks: the required technology can disappear within the
project’s life cycle or a promised technology may not be available when it’s required.

A popular software technology today, Web services standards, is a widely supported approach to
implementing a service-oriented architecture. Because Web services standards promise system
interoperability and flexibility to large projects, commercial and government organizations are including it as
the cornerstone of future computer-based systems. In fact, many systems currently being architected and
designed assume the availability of products built upon a stable and effective set of Web services standards.
This assumption presents project stakeholders with a large technology availability risk.

This technical note discusses some of the challenges of using Web services standards and presents the
results generated by an assessment tool used to track the appropriateness of using this technology. The
appendix includes an example built using the authors’ opinions about the current level of appropriateness of
using Web services standards in a typical, large software-intensive project.

14. SUBJECT TERMS

acquisition, COTS, interoperability, security, software-intensive system,
assessment, maturity, life cycle, reuse, service-oriented architecture, SOA,
web services, standard, software development, risk

15. NUMBER OF PAGES

64

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Acquiring Evolving Technologies:Web Services Standards
	Contents
	 Acknowledgements
	Abstract
	1 Introduction
	1.1 Making Decisions
	1.2 The Challenge of Assessing Evolving Technology

	2 The Challenge of Assessing Web Services Standards
	2.1 Language Translation Services Project
	2.2 Quality Attributes
	2.3 Web Services Standards

	3 Assessing the Appropriateness of Web Services Standards
	3.1 Assessing Appropriateness
	3.2 Selecting Relationships to Assess
	3.3 Developing an Assessment Tool
	3.4 Selecting a Rating Criteria
	3.5 Assessment Example

	4 Conclusion
	Appendix A Appropriateness Assessment Results
	How to Read the Results
	References

